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On the mechanism of wall turbulence 
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In  this paper an attempt is made to formulate a model for the mechanism of wall 
turbulence that links recent flow-visualization observations with the various quan- 
titative measurements and scaling laws established from anemometry studies. Various 
mechanisms are proposed, all of which use the concept of the horse-shoe, hairpin or 
‘A’ vortex. It is shown that these models give a connection between the mean-velocity 
distribution, the broad-band turbulence-intensity distributions and the turbulence 
spectra. Temperature distribut’ions above a heated surface are also considered. 
Although this aspect of the work is not yet complete, the analysis for this shows 
promise. 

1. Introduction 
Recently, Head & Bandyopadhyay (1981) have shown by very convincing flow- 

visualization studies with smoke that a turbulent boundary layer consists of a ‘forest ’ 
of hairpin vortices. These vortices can be seen in the cine film of Bandyopadhyay & 
Head (1979) to lean in the downstream direction a t  approximately 45”, and all points 
on a given vortex appear to be convected with a uniform streamwise velocity. These 
vortices are undergoing a stretching motion, but remain approximately straight, 
implying a uniform stretching. They do not appear to be interacting strongly with 
each other. As the Reynolds number of the flow is increased, these vortices become 
finer and more densely packed. Head & Bandyopadhyay suggest that the lateral 
dimensions of the vortices follow the Kline scaling (see Kline 1967; Kline et al. 1967). 

The present authors have also observed these vortices. Perry, Lim & Teh (1981) 
have observed similar vortices in turbulent spots and behind trip wires. Head & 
Bandyopadhyay make a distinction between vortex loops, horseshoe and hairpin 
vortices, all of which are topologically equivalent but are a t  different stages of stretch- 
ing. We will simply refer to these vortices as ‘A’ vortices. 

There is considerable evidence that these vortices originate from the wall in fully 
turbulent flow; see e.g. Corrsin (1957), Blackwelder (1978)) and also Bakewell & 
Lumley (1967) who refer to ‘counter-rotating vortex pairs of elongated streamwise 
extent’ in the wall region of the flow. To quote Head & Bandyopadhyay: ‘Further 
work in this area is evidently still required, but the present results certainly provide 
some experimental support for the ideas of Willmarth (1975, 1978) and Blackwelder 
(1978) and make it seem very likely that the hairpins or vortex pairs that are a pro- 
minent feature of the boundary layer as a whole have their origin in longitudinal 
vortex motions very close to the wall’. Head & Bandyopadhyay believe that they 
have seen these A-vortices form a t  the wall. Recently, a colleague, Dr T. T. Lim, 
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Law 

(1) - - - 
dZ KZ 

d8 8, 
dz K ~ Z  

(2) - = - 

(6) Laws 1 and 3 
work on a 
rough wall 

Conditions 

z+ 2 100, 
z/AE < 0.1 

z+ 3 100, 

f7 = O(1) 
z/AE < 0.1, 

z+ > 100, 
z/AE < 0.1 

z+ > 100, 
z/AE < 0.1 

z+ 2 100, 
z/AE < 0.1 

Some of the sources Credibility 

Millikan (1938) by dimen- High 
sional analysis based on a 
large amount of data ; also 
Coles & Hirst (1968) 

Perry, Bell & Joubert (1966) ; Fairly high 
Kadar & Yaglom (1972) ; 
Hoffmann & Perry (1979) ; 
Reynolds, Kays & Kline 
(1958) 

Townsend’s (1976) attached- Fair since reliable 
eddy hypothesis; Perry & 
Abell’s (1977) spectral- 
similarity arguments and 
measurements 

eddy hypothesis 

measurements exist 

Townsend’s (1976) attached- Uncertain; no reliable 
measurements, but based on 
same hypothesis as 3 

Townsend’s (1976) attached- Uncertain; no reliable 
measurements, but based on 
same hypothesis as 3 

Perry & Abell (1977) ; Hama Law 1 high ; law 3 fair; needs 
more work 

eddy hypothesis 

(1954) ; Clauser (1956) 

TABLE 1. A selection of ‘facts’ about wall turbulence. Here U1 is the mean velocity, z is the 
distance normal to the wall, rJ7 is the friction velocity, 8 is the mean temperature, e7 is the 
friction temperature, ulr ug and u3 are fluctuating velocities, and K CT K ~ ,  A ,  and AUs are 
universal constants, z+ = zU7/v, where v is the kinematic viscosity. AE is the boundary-layer 
thickness and ,T is the Prandtl number. The overbar denotes time average. 

believes he has also seen this formation in a fully turbulent flow, and this work is 
still continuing. This formation is difficult to observe (see 5 5.3). 

Once these vortices are formed they appear to undergo a stretching motion until 
they become highly elongated vortex pairs. This process was seen very clearly by 
Perry, Lim & Teh in the vortices behind trip wires. 

Thus a turbulent boundary layer appears to have a granular structure with a 
characteristic direction. The large-scale ‘bulge ’ observed with intermittency detectors 
could well be a ‘colony’ of fine-scale R-vortices passing the sensing probe. 

The idea of modelling the turbulent boundary layer with a random array of R- 
vortices is not new and has been discussed since Theodorsen (1952, 1954) published 
his papers. However, the evidence for the existence of these vortices is now much 
stronger, and it appears that the time is ripe to consider this proposal seriously. The 
R-vortex is a perfect candidate for the Townsend’s (1976) attached-eddy hypothesis. 
Townsend does not commit himself as to the nature of his geometrically similar eddies, 
but proposed that the eddies that contribute strongly to the Reynolds shear stress a t  
a given height z above the boundary, scale with that height and are therefore ‘in a 
sense, attached to the wall’. We believe that with the A-vortices one has all the 
iiecessary ingredients for linking the mean-velocity field with the Reynolds shear 
stress, broad-band turbulence, spectra and even the entrainment processes. Such 
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FIGURE 1.  Birth of a young eddy. 

modelling also shows promise in obtaining the link between mean-temperature fields 
and velocity fields in the presence of heat transfer from the wall. There are many 
directions or ‘scenarios’ that need to be pursued regarding the motion and scaling 
of these vortices. Existing laws for mean flow, broad-band turbulence and spectra 
established from hot-wire anemometry and Pitot-tube investigations are used here 
as a guide for narrowing down these possible directions. Unfortunately, in spite of 
the enormous literature on anemometry and Pitot-tube measurements of wall tuibu- 
lence, very few reliable ‘facts ’ emerge. The authors have selected a few facts that have 
reasonably convincing experimental support. These are listed in table 1, together with 
a ‘credibility rating’. Some symbols are also defined in the table. 

Figure 1 shows the conjectured birth of an eddy from the viscous-sublayer material. 
This material forms a sheet which rolls up a t  the edges. A series of horizontal cross- 
sections are shown in figure 1. For convenience, we have divided the vortex sheet into 
‘plates’ and ‘rods’ of vorticity. The flow pattern about such a vortex is discussed 
later in more detail, but, from the work of Perry, Lim & Chong (1980) and from con- 
siderations in $3 ,  the conjectured pat5ern seen by an observer moving with the vortex 
is shown in figure 2. The ‘saddle-node combination’ sets up a flow which lifts vortex 
filaments from the surface and wraps them into rods. Such a ‘combination’ has been 
deduced to exist by the above authors in coflowing wake patterns using the theorems 
of critical-point theory. It is conjectured that most of the cross-stream component of 
vorticity resides in the rods once the roll-up of the vortex is complete. It will be shown 
in $ 3 that the vortex undergoes a stretching motion by the Biot-Savart law, and this 
stretching helps to dissipate energy. In figure 2, the rods of vorticity are rounded a t  
their apex, as has been observed by Head & Bandyopadhyay. In  much of the analysis 
which follows, horizontal sectionings of the rods are used for calculating the mean- 
vorticity distributions. A rounded-top eddy causes considerable mathematical com- 
plexity in describing the sectioning a t  the apex; therefore for simplicity the rods will be 
assumed to merge a t  a sharp point. Although this is an approximation it makes the 
mathematics tractable. It turns out that, in some of the models, the precise shape of 
the A-vortex is not important. 
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Direction of flow 
Assumed rod geometry 

Rod of vorticity 

Vortex filaments of plate Q being wound into rods 1 

Saddle 

FIGURE 2. A-vorbex configuration. 

The diagram shown in figure 2 was inspired by the observations of trip-wire and 
turbulent-spot vortices, The tails of turbulent spots were interpreted by Perry, Lim & 
Teh as being trailing vortex pairs running along the wall and originating from initially 
spanwise-orientated vorticity. These could be related to the motions discussed by 
Bakewell & Lumley ( 1  967). 

It will be shown that the stretching motion brings the legs of the A-vortex together, 
i.e., as h increases, h decreases. It is then quite plausible that viscous diffusion will 
lead to vorticity cancellation, leading to the ‘death’ of an eddy. Thus one major 
simplification is that  the A-vortices are surrounded by irrotational fluid. Although 
this might not be precisely true, it isnecessary before any tractable analysis can proceed. 

It will be seen later that  these vortex rods undergo a local axisymmetrical straining 
motion; the diffusion of vorticity and heat under this condition will need to be ex- 
amined - this is done in § 2. I n  § 3 the details of the flow patterns surrounding the 
eddy and its straining motions are analysed using the Biot-Savart law. I n  3 4 a simple 
model €or the mean flow and temperature distribution is proposed for a turbulent 
boundary layer, assuming that all the eddies scale according to the Kline scaling. 
However, it will be shown in 9 5 that such a simple model is not possible, because the 
height of the eddy is limited by its ‘death ’, and that i t  is necessary for a hierarchy of 
scales of eddies to exist in order to extend the region of validity of the logarithmic 
law of the wall to arbitrary high z+ values for increasing Reynolds numbers. I n  $ 6 
the broad-band turbulent-intensity distributions are derived. The analysis is similar 
to  that of Townsend, except that non-geometrically similar eddies, caused by the 
stretching motions, are included. I n  $ 7  the spectral laws are derived using the Biot- 
Savart law for generating the ‘signatures’ of the eddies. 

With the use of the A-vortex concept, a unified theory of wall turbulence can be 
constructed that links the mean flow with the Reynolds shear stress, turbulent- 
intensity distributions and spectra. 
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FIGURE 3. Vortex rod undergoing axisymmetrical strain. 

2. The diffusion of vorticity and heat from stretched vortex rods 
One important aspect of turbulence is the stretching of the vortex rods. How does 

vorticity and heat diffuse as the rod is being stretched and a t  what rate of stretching 
can this diffusion be suppressed? The stretching of rods is one mechanism by which 
viscous dissipation takes place. 

Consider for simplicity a straight rod of vorticity being stretched by axisymmetrical 
strain. This could be simulated by placing the rod of vorticity a t  an axisymmetrical 
stagnation point as shown in figure 3. This will introduce swirl, and the rod will undergo 
a stretching motion. The vorticity transport equation is 

~ + ( U . V ) s z  = ( s2 .V)U+VV2s2,  
at 

where SZ is the vorticity vector and U is the velocity vector 1ocat.d by co-ordinates 
r and x in figure 3. Axisymmetric strain is given by 

U, = Zkx, V, = - kr, (2.2) 

where U, and U, are the axial and radial components of velocity respectively, and k 
is a constant. From ( 2 . 1 )  a 'smeared-out' vorticity similarity solution can be found 
of the form 

where f(y) = 1 - ~ y + ~ ~ 7 4 - 4 ~ ~ ~ 6 + . . .  

= exp ( - i y 2 ) ,  W 4 ) t  

where SZ is the modulus of the vorticity a t  radius r ,  and 0, is the corresponding value 
a t  r = 0. Ql is a function of time. All vorticity is directed in the x-direction. The 
quantity y = r / ro ,  where r,, is a length scale of the vorticity distribution; y is a function 
of time. I n  fact, r,, is given by 

where r,(O) is the initial length scale of the rod (radius) and t is time. 

t Ton nsend (195 1 n ,  b) arrived nt this equation from a similar analysis. 
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So far we have considered a constant value fur k. This corresponds to exponential 
stretching since a length 1 of a marked portion of the rod (shown in figure 3) increases 
exponentially with time. Also the velocity of a marked particle A increases exponen- 
tially with time. If the rod is stretched a t  a uniform velocity V ,  i.e. if 1 increases 
uniformly with time, then k becomes time dependent and is given by 

V k =  
2(x,+ Vt)' 

(2.6) 

where x,, is the initial length of the rod. The solution (2.4) is unaffected by this different 
strain variation, but ro is now given by 

For the case of exponential stretching a characteristic time scale t̂  is given by 

When t < t, the behaviour of the rod is inviscid. From (2.5), the rod radius decreases 
exponentially with time. Also it can be shown that the vorticity increases exponentially 
with time. However, no matter how small the viscosity, there will be a time ( t  = O(i) ,  
see (2.5)) when viscosity has an influence. In  fact, if t 9 f, GIl remains constant and 
so also does the rod radius r,,. In  this situation, viscous-diffusion effects and the 
stretching effects are in balance. 

In  the case of uniform stretching, a new time scale 7 can be derived from (2.7): 

where @ = xo/ro(0) and R = Vxo/v. Uniform stretching is the situation most likely 
to occur in wall turbulence, and a balance between diffusion and stretching is never 
achieved. Viscous diffusion will ultimately dominate and ro will ultimately follow the 
law 

For t < 7, again the vortex rod will behave inviscidly. 
A similar analysis can be applied for temperature distributions. If we imagine the 

rod to be elevated in temperature above the surrounding fluid, the analysis shows 
that the behaviour for temperature is much the same as for vorticity. 

The above results are useful in understanding the 'death' processes of an eddy and 
could be incorporated in the spectral analysis given later. 

ro = (vt)+. (2.10) 

3. Application of the Biot-Savart law to a A-vortex 
It is instructive t o  examine how an isolated A-shaped vortex deforms under its own 

self-induced velocity with its image in the wall. The surrounding vector field generated 
by this vortex is of interest since it gives an insight into the entrainment and transport 
processes. It will be assumed that the flow is inviscid and that slip is allowed a t  the 
boundary. Physically, this slip is generated by the presence of the thin viscous sublayer. 
The only effect of the sublayer is to allow an arbitrary translation of the flow relative 
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t z  

FIGURE 4. Deformation of A-vortex after one time step; only one leg is shown. 

to the rigid boundary. These boundary conditions are used by Townsend in his 
attached-eddy hypothesis (1976). As mentioned earlier, the surrounding fluid is 
irrotational, since all vorticity in the mean flow is assumed to be contained in the 
rods. The rods are of finite diameter but, for computing the flow field outside the rods 
using the Biot-Savart law, the rod diameter can be regarded as zero. The trailing 
vortices a t  the boundary and their images are ignored, since these form dipoles of 
vorticity (i.e. vortex pairs) and their far-field effect is negligible. It will be seen that 
vortex interaction is small. Hence the far field for our isolated vortex will be assumed 
to be uniformly a t  rest for the purposes of applying the Biot-Savart law. The actual 
translational velocity in the far field relative to the boundary is irrelevant. 

For simplicity the vortex filaments or rods will be assumed to be straight, since this 
enables analytical integrals to be obtained using the Biot-Savart law. Figure 2 shows 
the assumed geometry. The induced velocity a t  points located along the axis of any 
given rod can be readily computed by eliminating the rod in question and computing 
the effect of the other three rods (two of which are images). Knowing the velocities, 
the displacement of the rod after a short time interval At can be computed. A typical 
result is shown in figure 4. Except for the ends, where there are singularities, the rods 
appear to remain straight. It should be noted that the A-vortex is convecting itself 
backwards relative to the stream a t  infinity. 

To avoid computational difficulties with curved rods, the updated position of the 
rods were assumed to be straight. This was done by drawing a straight line between 
two points on the middle third of the rod length, and extrapolating to the boundary 
and to the apex. This was then used for computing the next position of the rods in 
the next time step. Although this is crude, it was felt to be justified since the effects of 
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FIGURE 5. Deformation of A-vortex after a number of time steps. Initial value of 
hlh = .$ and q5 = 45". a-a', initial position ; b-b', final position. 

the singularities a t  the ends of the rods (which in reality are not present) decay very 
rapidly with distance and have little effect over the central length. One could replace 
the sharp apex with a number of short straight sections of rods. This would introduce 
a series of weaker singularities. However, we contend that this would make little 
difference to the overall flow field outside the rods. Figure 5 shows the (y, 2)-projection, 
and it can be seen that the R-vortex deforms in an approximate 'plane-strain ' manner 
in the (y, 2)-plane, i.e. the product Ah remains roughly constant. Furthermore, the 
velocity of growth of h remains approximately constant. However, the angle of the 
(x, 2)-projection increases. Whether the observed constant I$ is caused by a restraining 
influence of neighbouring R-vortices is not known a t  this stage. 

Figure 6 (a )  shows the instantaneous velocity vector field on the plane of symmetry 
of the R-vortex in the (2, 2)-plane as seen by an observer a t  rest relative to the fluid 
a t  infinity. One can see that the induced velocity drops off very rapidly. The rods 
form a vortex pair in the (x, y)-plane (see later) and the vector field, in the large, 
resembles a dipole. Thus we would expect very little interaction with neighbouring 
A-v0rtices.t In  figure 6 ( b )  we have shown only the directions of the vectors. 

Figure 6(c) shows the same vector field relative to an observer moving with the 
convection velocity of the R-vortex as computed a t  the mid-point within the rods, 
i.e. z / h  = +. The geometry of the flow field is shown more clearly in figure 6 ( d ) ,  where 
only the directions are shown. 

Figure 7a ,  b shows the patterns of the (2, y)-plane (the wall) as seen by an observer 

t Of course this difficult problem of vortex interaction should be studied in further refinements 
of this modelling. 
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FIGURE 6. Velocity field at  plane of symmetry ((2, z )  -plane) of A-vortex. (a) Velocity field relative 
to observer a t  rest relative to fluid at infinity. ( b )  As (a) but with only velocity directions indi- 
cated. (c) Velocity field relative to observer moving with convection velocity of A-vortex. (d) 
As (c) but with only velocity directions indicated. 

moving with the same convection velocity as the A-vortex. Figure 8 ( a )  shows the 
interpretation of figures S ( c ,  a). From figure 8 it can be seen that the A-vortex is 
lifting material up away from the surface. Material is brought down towards the wall 
at  the sides and at  the downstream end of the A-vortex. An interesting point is that 
the focus in figure 8(a ) ,  ‘in the large’, is ‘unstable’, i.e. material is spiralling out. 
However, closer to the focus, material should be spiralling in, since the vortex rod is 
being stretched. This latter aspect cannot be calculated, since the rod is being simu- 
lated by a line vortex of zero diameter. The spiralling out of material is necessary for 
continuity. It should be remembered that the pattern is unsteady, that this focus is 
moving out relative to the observer, and that the instantaneous streamlines cannot 
be interpreted as path lines or streaklines. Nevertheless, one can see that any material 
that finds its way into the instantaneous alleyway, shown shaded in figure 8 ( b ) ,  will 
be lifted from the surface. Figures 7 ( a ,  6 )  are typical of other planes parallel to the 
(2, 3)-plane, and because of the ‘stable’ focus, i.e. because material is spiralling in, 
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( a )  ( b )  

FIQURE 7. Velocity feld on the (2, y)-plane of A-vortex as seen by an observer moving with the 
convection velocity of the vortex. (a)  Velocity field. (b) Velocity directions only, 
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FIGURE 8. (a )  Interpretation of figure 6 ( 4 .  ( b )  Interpretation of figure 7 ( b ) .  
X = saddle,P = focus, N = node. 
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it can be seen then that the rods are undergoing something like axisymmetrical strain. 
Thus, in the large, the R-vortex is undergoing approximately a plane-strain-like 
motion and the rods are undergoing locally, axisymmetrical strain. The discussion 
given earlier regarding the diffusion of vorticity and heat can therefore be applied to 
the rods. The plane-strain behaviour appears to occur in the cine observations of trip- 
wire vortices by Perry et ul. (1981). 

4. A simple model for wall turbulence 
4.1. Analysis for mean vorticity and temperature-gradient distribution 

For simplicity, assume that all eddies are leaning in the downstream direction a t  a 
constant angle 4 as shown in figure 9. Imagine we have a sampling volume ABCD, E 
units long, and slanting a t  the slope of the eddies. Let the cross-stream width of our 
sampling volume be A,, the average lateral spacing of the eddies. 

We are going to derive an expression for the distribution of mean vorticity and 
mean-temperature gradient along the slanting line S as a function of 2, the vertical 
distance from the wall. It will be assumed that over the finite distance E there is no 
significant variation in statistical quantities. Let a large number of randomly chosen 
realizations m be carried out within this sampling volume, each realization eorres- 
ponding to a fixed instant of time. Let L = mE and let all the eddies sampled be 
arranged in order of height h and distributed a t  a uniform spacing along this hypo- 
thetical sampling length L.  This will give us a distribution of eddy heights as shown 
in figure 10. These heights are shown as vertical bars. 

From the geometry and symmetry of the eddies, the mean vorticity produced by 
a random array of such eddies must be in the cross-stream direction. Hence we need 
only consider the y-component of vorticity. Again, it will be emphasized that all the 
vorticity in the flow resides in the rods and the surrounding fluid is irrotational. 

The contribution to  the mean vorticity i j a t  level x above the surface will therefore 
depend on the number of rods of vorticity being cut. For the interval 6x' in figure 10 
the elemental contribution is 

where x' is a distance measured along the hypothetical sampling length L, A ,  is the 
cross-sectional area of the rod in the (x, y)-plane a t  levelz, TRis the average y-component 
ofvorticity in the area A,, and N, is the number of eddies per unit length when spread 
uniformly over the length L. It is assumed that the average spacing of the eddies is 
independent of height. The factor of 2 is included since there are two legs to the A- 
vortex. For large m, (4.1) would give 

However, x'/L = fE(h/S), where 6 is the height of the highest eddy. Changing the 
variable of integration gives 
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FIGURE 9. Random array of eddies and the sampling volume ARCD. 

-L- 

FIGURE 10. Arrangement of eddies in order of height. 

s2 = 1919= total vorticity vector averaged overA, 
\ 

FIGURE 11. Rod of vorticity curved in space. 
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where nl is the mean velocity in the x-direction. The quantity 8-yL(h/6) is the nor- 
malized probability density function (p.d.f.) of eddy height h, i.e. pE(h) ,  and is nor- 

malized such that  pE(h) dh = 1. Som 
Considering for the moment that the rods are of uniform cross-sectional area along 

their length, but curved in space, figure 11 defines some of the various quantities, 
and A,  is the area of the rod normal to its local axis. It is simple to show that (4.3) 

.. 

can be written as 
(4.4) 

where e = l / N e  is the average streamwise spacing of the eddies. The x, y and z velocity 
components are respectively U,, U, and U, in figure 11. 

As mentioned in 9 1 ,  when eddies die by viscous diffusion and vorticity cancellation, 
the flow field surrounding the A-vortex is made up of debris which is assumed to be 
irrotational. However, heat that is carried away from the wall within the rods does 
not cancel, and so the hot rods will be surrounded by a background temperature of 
‘ lukewarm ’ fluid resulting from this debris. Assuming that this background tempera- 
ture is uniform, an analysis similar to that carried out for the mean vorticity leads to 

Let 8 denote temperatures measured relative to the wall, and define 8, = T, - T,; 
let the suffix w denote wall. The suffix j can be replaced by R, meaning rod, or b, 
meaning background temperature. 8 is the mean fluid temperature relative to the 
wall, and 8k = OR - 8,. It is convenient to measure the rod temperature relative to 
the background temperature so that the weighting factors in the integral (4.5) are 
the same as those in (4.4). 

A general curved A-vortex (which has a plane of symmetry) can be described by 
two equations: 

X - =  F ( i , ! ) ,  ! = G ( i , a ) ,  
h 

where E is an extra length scale yet to  be defined. As the vortex is stretched, two con- 
servation principles have to be observed. These are the conservation of circulation 
and heat: 

(4.7) 

&AB C = 8koAB,Co, (4.8) 

where the subscript 0 denotes initial values, say when the vortex has completed its 
roll-up, and C is the arc length of the rod. 

From (4.4)-(4.8), it can be shown after a considerable amount of algebra that 

where F’ = dF/d(z/h)  and G = dG/d( z /h ) .  
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The crude calculation given in $ 3 ,  where the rods were assumed to be straight, 
indicated that the growth rate of the vortices is uniform, implying a linear distribution 
of eddy heights in figure 10. This would give a flat p.d.f. with p X ( h )  = 1/S in the 
interval 0 < h < 6,  and zero elsewhere. We are now seeking solutions such that 
dUJdz  N z-1 and d8/dz N z-l for z / S  small,? treating S as an outer length scale of the 
boundary layer. This is to satisfy the results given in table 1. 

The only way to produce the correct result for temperature is to have straight rods 
giving 

(Fr2 + 0'' + l)* = (Fr2  + CTr2 + 1)& d ( z / h ) ,  

since F'' and G'2 are constants. Hence 

(4.11) 

The rod angle q5 can be a function of h, but the rods must be straight. Since the rods 
are straight, and, if we continue with the assumption that the angle q5 is constant, 
then the extra length scale 1 in (4.6) is not needed, as this is associated with the pro- 
jected slope of the vortex in the (x, 2)-plane. 

To obtain the correct variation for the vorticity, plane strain must occur in the 
(y, 2)-projection of the eddy, C' is then given by G' = A, ho,/2h2, and so 

(4.12) 

which gives the required result for z < 6. The quantities A, and h, could be regarded 
as the initial values of h and h just after the vortex has completed its roll-up and plane 
strain has just commenced. 

4.2. Eddy 'generations' 

We see that with (4.12) there is an immediate difficulty. If we wish to take S to arbitrary 
large values then d U J d z  -+ 0 as 6 --f a at finite z .  This odd behaviour is due to the 
fact that we have not taken into account that there exists a population problem, 
which can be explained best by an example. Figure 12 (a )  shows an orderly array of 
A-vortices produced periodically from a source 0. One can see that the range of eddy 
heights sampled in the measuring volume is limited. Even if the source at  0 is jittered 
back and forth along the x-axis, the sampling will still be limited. Figure 12 ( b )  shows 
a more-realistic picture where there are a number of sources 0, 0') 0". We imagine 
that each time an eddy reaches a height So a new 'generation ' of eddies is born ' a t  
the wall. With jitter, our measuring volume will sample all scales of eddies. 

Consider a flow in a pipe. Here conditions are statistically uniform with streamwise 
distance x, so we can make our measuring volume any size. Suppose that we make it 
p ,  as defined in figure 12 ( b )  and that there are n generationsof eddies. In one realization 
all eddy sizes have been sampled for the ideal case illustrated, and, when the eddies 
are stacked in order of size, a linear distribution would result for figure 10. 

It can be seen that 6 = nS,, where n is the number of generations, and, as S + 00, 

n -+ m. (Also n need not be an integer.) The important feature shown in the diagrams 
is that the spacing of the eddies diminishes as n increases. In  fact, as S grows we have 

t Throughout this paper - means 'proportional to' or 'scales with'. 
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FIGURE 12. Eddy generations (see text). 

a 'population explosion' a t  the wall. Thus e in equation (4.12) should be replaced by 
e/n, and e is now interpreted as the average spacing of eddies in a given generation. 
The quantity 8 is replaced by ns,, and so (4.12) becomes 

(4.13) 

In the limit of 6 -+ CQ, the equation has the correct behaviour. The population density 
increase is not important close to the wall, since the eddies with larger height h make 
diminishing contributions to the mean vorticity. 

7 FLM 119 
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4.3. Scaling of the eddies 

On the completion of vortex roll-up of the disturbed sublayer material, a Kline 
scaling will be assumed (see Kline et aZ. 1967; Head & Bandyopadhyay 1981). We will 
assume that all length scales a t  roll-up scale with v/U,, including the length of vortex 
sheet I, that is rolled up to form the rods (see figure 13a). 

Let A, = a,v/U,, h, = b,v/U,, the characteristic velocity jump across the sheet 
AU = c, U,, 1, = d, v/U7, e = el v/U7, A, = f, v/U,, 8, = g ,  v/U, and e = h, v/U,. There- 
fore IC2,1An; = AUl, = cldlv.  Substituting all of these into (4.13) gives the classical 

(4.14) 
result for z < 8, i.e. dD, U, 

- 
d Z  KZ’ 

where 

is the von K&rm&n universal mixing constant. 
A rough order-of-magnitude check can be made by substituting into (4.14) some 

reasonable ‘guesses’ for the various constants. If we imagine that a ‘carpet’ of cross- 
stream vorticity U:/v, e units long and 5v/U, units thick (the thickness of a viscous 
sublayer), is distorted and wrapped into two rods of vorticity as shown in figure 13 ( b ) ,  
then AUZ, = AQ~lS2,1 = 5 e ,  v, and so cld,  = 5e,. Taking f, = 100, el = 200, 9, = 100, 
a, = I00 and b, = 50 gives K = 0.4, which is close to the accepted value. 

A similar analysis can be carried out for the temperature distribution if we assume 
that -Bko scales with the friction temperature 0, where B, = q,/pC,U,, where qo is 
the heat flux, p is the fluid density and C, is the specific heat. Furthermore, for fluids 
with a Prandtl number of unity or higher (gases to oils) Ao; will be approximately 
equal to Aao. Hence put -&, = k,O,, Ago = eZ, = h ,d , (~ /U , )~ ,  C ,  = Z,v/U,. Substitu- 
tion into (4.11) gives the classical result 

(4.15) 

f,e,g1 
k lhld,  4 

where 

is the thermal analogue of K .  

For a fully rough surface (i.e. when we are in the rough regime) we will define a 
roughness scale R such that A, = f, L This follows a suggestion by Grass (1971). It 
will be assumed that all large-scale features of the vortex produced a t  the completion 
of roll-up are geometrically similar to that from a smooth surface, but have a length 
scale 4, and that  the characteristic velocity scale will be U, in both cases, since this 
is related to the wall shear stress. Fine-scale features such as the thickness of the sheet 
will involve viscosity, and this will not fit in with the similarity scheme. However, 
we would expect e = el k, So = g, k, A, = a, k, h, = b, 4, A U = c ,  U,, I, = d, k, and hence 
1SZ,(Aa0 = c,d,kU,. Substitution into (4.13) gives (4.14) as before. 

An interesting point to note is that the effects of viscous and thermal diffusion have 
been accounted for in the analysis by using the conservation laws (4.7) and (4.8), i.e. 
viscous and thermal diffusion takes place during the plane-strain process, and yet the 
classical results are obtained which are independent of v and the thermal diffusivity 
coefficient. This satisfies the Townsend ( 1976) Reynolds-number similarity hypothesis. 

KEI = ~ 
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Region of sheet that 
contributes 
significantly t o  dU1 - 

dz 

E = sheet thickness 

\Circuit for calculating circulation. 
I ,  is the arc length of sheet 
in the rod 

( b )  

FIGURE 13. (a) Cross-section of eddy. (b)  Carpet of vorticity 
being wrapped into vortex (schematic), 

4.4. Death of eddies and the necessity for hierarchies 

The classical results (given by (4.14) and (4.15)) have been succesfully derived with 
plausible assumptions, and are consistent with the Biot-Savart law. Unfortunately, 
as the A-vortex is stretched more and more under plane strain, the legs approach each 
other and viscous diffusion must ultimately dominate over this uniform stretching, 
as shown by (2.9). Vorticity cancellation must cause the eddy to ‘die’. Even prior to 
this cancellation process, the eddy is of no consequence regarding the mean-flow field 
close to the wall, since its contribution to  the mean vorticity becomes progressively 
weaker as its h/A ratio becomes progressively higher. In  fact, using (2.9) one can 
deduce, if V (=  dh/dt) scales with U,, that the eddy ‘death’ must commence a t  a 
fixed value of h, ( = hU,/v). However, it has always been accepted that the logarithmic 
law of the wall (given by (4.14)) is valid for arbitrary large values of z+ for SU,/v+ co. 
Hence the model presented so far, attractive though it may be, is incomplete, and is 
not the only model that fits the ‘facts’,. 

7-2 
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5 th hierarchv 

FIGURE 14. Symbolic representation of a discrete system of hierarchies. 

5. Hierarchies of eddies 
5.1. Introduction 

In order to extend the law of the wall we have to introduce hierarchies of eddies that 
are geometrically similar and there are many ways of doing this. 

To preserve the Kline streaks at the wall, which scale according to A, = lOOv/U,, a 
series of geometrically similar hierarchies could be stacked according to figure 14, 
where the scales of the hierarchies are in a geometrical progression. Within each hier- 
archy, plane strain is occurring and the eddies grow from their initial roll-up height to a 
height 6, where 6 is the height of the highest eddy within the hierarchy. The number of 
hierarchies will increase with Reynolds number, but the structures become finer within 
a given hierarchy with decreasing v/U,. Some evidence for this can be seen in Head & 
Bandyopadhyay (1981, figure 32, plate 9).  

Although, for lcw values of z / 6  in a given hierarchy, contributions to the mean 
vorticity by eddies of height h/6 + 1 may be unimportant, this is not true for z / 6  -+ 1.  
Now that we have hierarchies of eddies, z / S  can be arbitrarily large even though z/AE 
may be small. Here AE is the true boundary-layer thickness, which is the height of 
the highest eddy in the highest hierarchy. Now, in a given hierarchy, 6 will be limited, 
and will be defined as the height a t  which the legs of the h-vortex begin to merge. 
Any eddies higher than S are assumed to be of no consequence. It is conjectured that 
6 is limited and that only the first two or three ‘youngest’ generations have any 
significant effect. The original equation (4.12) will now be used, where it is understood 
that e is the average spacing of eddies in a hierarchy (and not in a given generation) 
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and that Sis limited. In the first hierarchy, it will again be assumed that viscous scaling 
is valid and that 6 scales with vlU,. 

It will be assumed that all length scales double as we go from one hierarchy to the 
next. However, since all hierarchies are made from the same sublayer material, the 
characteristic sheet strength or velocity jump AU is the same and scales with U,. 
In  the first hierarchy, all quantities are as before except e = e2v/U, and 6 = g2v/U,, 
giving K = fle2g,/alblcldl, which is the same as the previous K ,  since, although the 
definition of e is different and 6 replaces So, the product e2g2 equals e lg l .  Now, for 
consecutive hierarchies, A,, h,, A,, e and 6 will double. So also will 18,IAQ0, since this 
is given by ISZ,IA& = AUl,, and 1, will double. There are two ways of looking at this. 
We could consider A& N 6 and IQ0I fixed, or alternatively the ‘smeared-out area’ 
of the rod A,* N S2 and the smeared-out 1S2,1 N l/S. In either case, the circulation 
doubles, giving many groups of geometrically similar eddies which have the same 
characteristic velocity scale. It will be seen later that this is consistent with the 
Townsend attached-eddy hypothesis, and is one necessary condition for giving 
constant Reynolds shear stress. Hence, each hierarchy of eddies gives 

and if 8, is the scale of the first hierarchy 

where N is the number of hierarchies. As N -+ 00, i.e. as AE = 6,2N-1 -+ co, dUl/dz does 
not converge. We have been assuming that all hierarchies have small h, and that 
plane strain effectively starts a t  the wall with the appropriate lateral length scale, 
and this may not be correct. Hence it is necessary to consider how the hierarchies are 
formed. 

5.2. The ‘quantum-jump’ or discrete system of eddies 

One way to make the model work is to assume that all hierarchies other than the 
first have no eddy heights less than 66, where 6 is the scale of the hierarchy under 
consideration. It will be seen later that b must equal i. Thus, in each hierarchy, the 
shortest eddy which is to undergo plane strain must appear from ‘nowhere’. Vortex 
pairing of two eddies in one hierarchy to  form an eddy for the next hierarchy is one 
possible explanation. Two eddies which are of the largest height in a given hierarchy 
pair to give the shortest eddy for the next hierarchy. In fact one must assume that 
half the eddies in a given hierarchy are destined to pair and the other half are destined 
to die. Suppose we go back to our sampling volume and count only those eddies in a 
given hierarchy which have geometrically similar ‘partners ’ in other hierarchies. All 
eddies can be stacked in order of size as before and we obtain the distribution given 
in figure 15. We now repeat the analysis given in 9 4.1 for each hierarchy, and this 
gives 

(5.3) 

where e is now the average spacing between eddies that have geometrically similar 
partners in other hierarchies. This may be written again as (5.1) with the same K . t  

f This is because the definition of e has changed so that the final value of‘ K again remains 
unaffected. 
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FIGURE 15. ‘Quantum-jump ’ or vortex-pairing model. 

It should be noted that, in the first hierarchy, extra non-geometrically similar eddies 
have been added and ‘folded back’ in figure 15 to simulate the fact that eddies 
undergo plane strain from the wall for this hierarchy. 

For the first hierarchy and with b = $, dOl/dz is given by 

where H is a Heaviside function. For subsequent hierarchies 

- dol  dz = y [ I - H ( ? . - $ s ) ] +  K S [H(z - f rS ) -H(z -S ) ]  

The reason for the flat distribution of vorticity between 0 < z < $S in the above 
equation is that the number of eddies being cut remains constant for z < 4s. The 
complete distribution is therefore given by 

+ 
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FIGURE 16. How profiles are summed up for three hierarchies. 
Relationships are shown without Heaviside functions. 

which reduces to the amazingly simple result that  

-- (5.4) 

with AE = 2N-1S1. This is best understood from a graphical construction as shown in 
figure 16. If b > 4, ‘plateaus’ will appear and, for b < 4, ‘bumps’ due to overlapping 
will occur in the final velocity distribution. 

The idea of vortex pairing is consistent with the scaling laws developed earlier. 
The circulation doubles if the length scale of the hierarchy doubles. Vortex pairing 
may not be the only mechanism, and this is discussed in 9 5.4. 

To simulate the possibility that  eddies a t  the wall take time to roll up, and therefore 
their growth rate is initially slower, further weighting can be put into the distributions, 
as shown in figure 17, and could be adjusted to give the well-known buffer zone. The 
normalized p.d.f.pE(h) used in $4.1 turns out to be proportional to tan $, i.e. 

This gives the distribution of eddies that have geometrically similar partners in other 
hierarchies, and is normalized to unit area because of the definition of e (the spacing 
of such eddies). The extra weighting is shown in figure 17  (a,  b), and the viscous sub- 
layer could be simulated by something approaching a Dirac delta function. The 
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FIGURE 17. Arrangement of eddies and associated p.d.f.s. (a) First hierarchy; 
(b)  associated p.d.f. ( c )  Hierarchies higher than the first ; ( d )  associated p.d.f. 

resulting ‘law of the wall’ is shown in figure 18. It should be remembered that 8, 
scales with v/U,. 

This pairing process, if it exists, would give the eddy a new ‘lease of life’, since, ‘in 
the large’, its scale is growing uniformly with time, whereas, with viscous diffusion, 
its scale varies with (vt)*. Thus the inviscid process of pairing will dominate. However, 
if an eddy is ‘unlucky’ and does not find a ‘partner’, it will die by viscous diffusion 
and vorticity cancellation. 

5.3. Temperature distribution with hierarchies 

A similar analysis can be carried out for temperature. However, a problem occurs 
when considering the definition of l / K H ,  which from (4.11) is 

The higher hierarchies are made from the same sublayer material, so - 8& = k,  8, as 
before, but AOo scales with 6. In  effect, the heat content of the rod doubles as the scale 
of the eddy doubles. Since C,, A, and e will all scale with 6, l / K H  will scale with 116. 
Thus the mixing constant for the thermal law of the wall halves from one hierarchy 
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A ,  is a universal constant. 
FIGURE 18. Mean-velocity profile interpreted in terms of quantum-jump model. 

L 
to the next. There are two reasons why the temperature profile will not do this but 
will actually tend to follow a constant l / ~ ~ ~ .  The first reason is that  - Oko is the rod 
temperature measured relative to the background temperature 0,. Since we have 
hierarchies, the debris deposited by each hierarchy on eddy death will set up a gradient 
in the background temperature. The second reason is that this background tempera- 
ture will be very high close to the boundary, and material entrained into the rods will 
be transported within the rods from the lower hotter regions to  the higher cooler 
regions, causing AOo to scale between Sand S2. The transport of heat in the surrounding 
irrotat,ional fluid would have to be computed, and this is analytically intractable. 

The strong mixing of the irrotational motions close to the wall and the high con- 
centration of debris is evident from the very ‘foggy’ appearance of the smoke close 
to the boundary. The authors have observed this, and so also have Head & Bandyo- 
padhyay. Realizing that smoke has a very high Schmidt number, these mixing pro- 
cesses must be very strong, and make it extremely difficult to observe the formation 
of eddies at the boundary because of a lack of an air-smoke interface. These new eddies 
can be seen only after the smoke is introduced well downstream of the boundary-layer 
origin (see Head & Bandyopadhyay 1981). 

6.4. Discrete system and distributed system of hierarchies 

So far we have considered a system of hierarchies whose length scale goes in geo- 
metrical progression with a factor of 2 from one hierarchy to the next. When random- 
ness is introduced into the process, this quantum-jump phenomenon could well be 
smoothed out. With jitter in the various quantities, the net result could perhaps be 
better described by a continuous distribution of scales. I n  fact, certain other mecha- 
nisms suggest themselves with this cont,inuous distribution. 
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FIGURE 19. Hierarchy p.d.f.s. (a) Discrete distribution. 
( b )  Continuous distribution resulting from jitter. 

With the model so far, for z > bs,, what we are effectively doing is to say that, if 
dVl /dz  for each hierarchy is written as f ( z ,  6), then the resulting distribution of dVl /dz  
is given by 

(5.6) dV1 -- - : f(z,s12n-1), 
dz 

where 8, is the smallest hierarchy scale. Equation (5.6) could be written as 

where pH(&)  is the probability distribution for hierarchy scales. For the special case 
of (5.6)) pH(8) is a series of unit delta functions as shown in figure 19(a). With random 
jitter, this will lead to the ‘bumpy’ function shown in figure 19(b).  It is shown in 
appendix A that a truly monotonic distribution that preserves the ‘geometrical 
progression ’ property of our original distribution is 

where M is a constant of order unity. Thus 
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where the symbol pr means that the right-hand side is the distributed analogue of 
the discrete left-hand side. 

5.5. Mean vorticity with a distributed system of hierarchies 

The mean vorticity is now derived for a continuous distribution of hierarchies thus: 

(5.10) 

where again 6, is the smallest hierarchy. The function f is obtained by assuming the 
distribution of eddies as given in figure 17. To simulate the possibility that, as the 
hierarchy scale grows, fewer and fewer hierarchies are formed a t  the wall, but originate 
from a pairing process as the hierarchy scale 6 increases, the degree of foldback shown 
earlier could be made a function of 6 and should diminish with increasing hierarchy 
scale. This would simulate the buffer zone. Suppose that z > 6, is sufficiently far 
from the wall that we can ignore these foldbacks. The appropriate function f ( z , 6 )  is 
then given by 

+ [H(z  - b6) - H ( z  - AE)] 15 (2 
1 - i  

where K’ is the K given earlier, but since new constants will appear the symbol K will 
be reserved for the von KBrmGn mixing constant that finally emerges. 

After performing the integration given by (5.10) we obtain a number of zones with 
analytical expressions, the only one of interest being 6, < z < bA,, which is 

(5.12) 

This is the only region where the logarithmic law of the wall can occur. For b finite 
and for 

A,bln(l/b) ‘” 
z I - b  - 

(5.12) reduces to 

where K’ 1-b 
M I n ( l / b ) ’  

K = - -  

(5.13) 

If b = 0, this means effectively that all hierarchy scales originate from the wall with 
their appropriate lateral scale and undergo plane strain. Equation (5.12) then becomes 

(5.14) 

which will obviously not lead to a logarithmic profile. If b -+ 1,  then (5.12) will give 

au, u, 1 1 _-  _ _  
dz K ( z  AJ’ 

where K = K’/M. 

(5.15) 
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FIGURE 20. The continual roll-up and plane-strain model. 

This case has no plane strain, and the eddies are continually growing, preserving 
their shape, and increasing their circulation K such that K N S. This would correspond 
to the Townsend attached-eddy model (Townsend 1976). Townsend did not apply 
this model to mean vorticity but to turbulent-energy distributions, but he did assume 
in effect that all eddies were geometrically similar, that the circulation grew with scale 
(to give a constant velocity scale), and that the probability distribution p H ( S )  scales 
with l/S. An interesting point is that (5.15) is the same result obtained with plane 
strain but with only one hierarchy. This is also the result obtained with the discrete 
system with b = 9 ((5.4)). With this model, the eddy is continually rolling up, but its 
likelihood of survival must diminish with scale so as to give the correct probability 
distribution. 

This leads to the idea of another possible model - namely, a combination of both 
processes. We have eddies that are continually rolling up until somehow this process 
is disturbed and they then undergo plane strain and die. This would give a genuinely 
distributed system of eddy hierarchies where plane strain occurs in each hierarchy. 
This model avoids all hierarchies forming a t  the wall at their appropriate hierarchy 
scale. Rather, they all form a t  the wall with the Kline scaling. Vortex pairing is no 
longer needed. Figure 20 shows this sequence of events schematically. 

With this model, (5.12) is applicable. Again, since the velocity scale of the eddy is 
constant during this roll-up stage, its growth is uniform in time. Thus this growth 
dominates over viscous diffusion. However, once the process of roll-up ceases and 
plane strain occurs, viscous diffusion must ultimately dominate, leading to eddy deat'h. 
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6. Broad-band turbulence intensities and cross-correlations 
Each eddy will have a velocity function 

where ui is the fluctuation about a mean. Of course, ui cannot be computed from the 
Biot-Savart law unless we know the contributions of the eddies to  the mean velocity 
Vl, and this depends on the arrangement of the eddies. However, since v2 = 0 and 
U3 = 0, up and u, can be readily computed using the Biot-Savart law. r;T, is the charac- 
teristic velocity scale of the eddy and h/S is its ‘strain number’ (i.e. a measure of 
how much it has been stretched), and 6 is the scale of the hierarchy. It is quite valid 
to use the same velocity scale U, for all eddies in a given hierarchy. It could be defined, 
for instance, as the induced value of ui a t  some fixed standard value of x/S by an eddy 
of a fixed standard ‘strain number’ h/6. If we double the scale of 6 in moving from 
one hierarchy to another, then, according to the scaling laws given earlier, we must 
double the circulation. It is then simple to show that U, then remains fixed even from 
one hierarchy to the next. 

If we are a t  a fixed value of 2, the total contribution 6(uiuj) made by one isolated 
eddy is given by 

6(UiU i )  = ui ui ax a y 

If, for instance, i = j = 1, 6(u,ui) is the total amount of streamwise fluctuating 
kinetic energy u! contributed by one isolated eddy per unit thickness of fluid in the 
z-direction. 

Contribution to the mean value of uiZ from a given hierarchy will be written as 
Au-, and we simply add the energies from each member of the hierarchy since we 
have a random distribution of these eddies and the mean values of cross-correlations 
between velocities induced by our given eddy and those of neighbouring eddies will 
vanish on averaging. This is effectively the assumption used by Townsend. Following 
the analysis used for obtaining the mean vorticity, we have 

Following the scaling rules given earlier, i.e. A, N 6 and e N 8, we then have 

or 



2 00 A. E. Perry and M. S. Chong 

It should be noted that it is being assumed that there is no contribution to S(u,uj) 
from an eddy once z exceeds h. Our computations, assuming that a hierarchy could 
be replaced by a ‘representative’ A-vortex, show that there is a rapid fall-off once z 
exceeds 6. Nevertheless, this assumption is not strictly necessary since we can simply 
redefine 6 such that for z / 6  = O( 1) this contribution is small. 

Here I i j (z /6)  is equivalent to  Townsend’s eddy function. He assumed that all 
eddies were geometrically similar, and did not include the strain number. This has 
now been ‘integrated out’, and Ii j(z/&) represents an eddy hierarchy function. 

The value of uiujis found simply by summing up the contributions from the various 

assuming a geometrical progression of hierarchies with the scales doubling from dne 
hierarchy to the next. We could go from the discrete system to the distributed system 
by using the relation given by (5.9)’ i.e. 

We must now consider the properties of the hierarchy function I t i ( z /S ) .  Here we 
will invoke the Townsend (1976) boundary conditions. For x/S small, 

since f , ( O )  = 0 and we are assuming that we can Taylor-series expand about z = 0. 
The functions fi and f ,  are not restricted in this way, and fl(0) andf,(O) could be finite, 
assuming that we are neglecting viscous effects and are allowing slip a t  the boundary. 

I,, N z*, I,, N z*2, and I,,, I,, -+ non-zero values as z* --f 0. (6.4)  

Here z* = z /S .  Using (6.3) it can be shown that 

(6.5) 

which is the Townsend result. Conjectured functional forms for Iij(z*) are shown in 
Townsend (1976, figure 5.7). From (6.4) and (6.5) i t  can be shown that? 

q / U g  = K 1 3 ,  (6.6) 
where K,, is a universal constant. Since U, has been taken to be constant it follows 
that we have constant Reynolds shear stress. Hence all the scaling rules developed in 
$ 5  for eddy hierarchies are consistent. Furthermore, U, can be taken to be U,, the 
friction velocity. Other results that  follow are 

- 

t Townsend’s analysis for this is brief, and some details are given in appendix B. 
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FIGURE 21. Summation of eddy hierarchy functions for $/U:. (a)  Functions 
for various hierarchies. ( b )  Summation of functions. 

where A,,, A,,, B,,, BU2 and Bus are universal constants. These equations were quoted 
in ‘differential form’ as laws 3, 4 and 5 in table 1. 

A very illustrative way of showing the validity of these relations is to consider the 
discrete system with the scales of hierarchies doubling: 

Il1(z/an) when plotted semilogarithmically is stretched out a t  low values of z/S, and is 
approximately constant, and, for z/8, of order 1 and higher, the function will be com- 
pressed and will drop off very rapidly (see figure 21). Here, these functions for different 
values of n simply shift bodily horizontally without distortion on the semilogarithmic 
plot and are each displaced from each other by one octave. 

We now sum these functions to give a ‘staircase’ function shown in figure 21 (b).  
One can see that this staircase function will approximate to the functional form given 
by (6.7). 

Consider now the quantity 
N N z 

n= 1 n=l 
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FIGURE 22. Summation of eddy hierarchy functions for Reynolds shear stress. 

This is shown in figure 22. Since there are no hierarchies less than a,, then -/Us 
will drop to zero very rapidly and this would correspond to a region where the Reynolds 
shear stress is changing rapidly t o  viscous stresses. The behaviour of g/U: will be 
similar. These ‘bumpy’ functions and ‘staircase’ functions will be smoothed out by 
‘jitter’ and randomness or by a genuinely distributed system of hierarchies. 

7. The spectrum of turbulence 
Fourier transforms and the power-spectral density of signals produced by turbu- 

lence are very difficult to interpret or understand. Nevertheless, they are easy to 
measure and give an indication of how the energy is distributed among the scales. 
This work was motivated by the idea that modelling of wall turbulence should be 
consistent with measured spectra and should be linked to the broad-band and mean- 
flow results. 

Unlike models of the past, this model implies that  wall turbulence has a granular 
structure with a characteristic direction. Since local isotropy is no longer operative, 
a new explanation or argument must be devised for the existence of the - law. 

At high frequencies or wavenumbers the power spectrum is influenced mainly by 
the shape of the eddy signatures, while a t  lower wavenumbers or frequencies the 
spectrum is influenced more by how the energy is distributed among the scales. The 
detailed shape of the signatures become unimportant a t  these lower wavenumbers. 
One very useful rule (Bracewell 1978) for the high-frequency end of the spectrum is 
that, if n is the number of times one has to differentiate a signal to convert it to a delta 
function, then the smoothed power-spectral density P(k)  will asymptote to  a law 
P(k)  N k-2%. Here k is wavenumber or frequency. It has been felt by many workers 
(see e.g. Townsend 1976) that the finest-scale motions of turbulence are generated by 
vortex sheets passing the hot-wire probe, and these dissipate the energy of turbulence. 
From the flow-visualization work of Head & Bandyopadhyay (1981) and Perry et al. 
(1981) these vortex sheets are wound up into rods. The rods could be thought to 
consist of a ‘scroll’ of vortex sheet. As such rods are cut through by a sensing probe, 
the high-pass-filtered signal will be of a sawtooth form provided the vortex sheets are 
very thin and sharp. Using the Bracewell rule, this should give P(k)  N l/k2. This 
scroll could be something like a Kaden spiral (see e.g. Pullin & Phillips 1981), and 
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FIGURE 23. Definition of co-ordinates and vectors for velocity-signature analysis. 

one would intuitively feel that, since the signature of this is one scale removed from 
the scale of the sheet itself, then this should be responsible for the - Q  law. With 
viscous diffusion the sheet will not be perfectly sharp, and, a t  very high wavenumber, 
the waveform would appear to have the properties of a triangular wave. Using the 
Bracewell rule, this leads to P ( k )  N l /k4 .  It can be seen that the -Q law simply does 
not fit into this scheme. Out of curiosity, we devised a waveform with a - Q  law 
spectrum to see what it might look like. Using the Bracewell rule, together with the 
concept of ‘fractional differentiation’, a wave with a + power-law cusp would give 
the required result. This needs to be differentiated ‘Q times’ to give n = $, and hence 
the - Q law. This was also checked numerically using a fast-Fourier-transform 
computer program. It seems unlikely that the -5 law comes from such eddy signa- 
tures. Rather, if it exists, i t  seems more likely to be related to the distribution of 
scales of signatures. 

We found that a far more fruitful approach to  this question was to ignore the 
details of the rod altogether, or a t  least assume that the vorticity is smeared out 
according to the similarity relation given by (2.4). It is found that all of the salient 
properties of the spectrum can be generated from the signatures and distribution of 
the signatures existing in the irrotational fluid surrounding the vortex rods. This will 
now be demonstrated. 

I n  order to keep the description simple and analytical, some simplifications will be 
made. Let it be assumed that the spectral contribution from each hierarchy can be 
derived from one representative eddy. Figure 23 shows one ‘leg’ of the eddy being 
sectioned by a plane of constant x .  If we imagine that we have a hot-wire probe held 
stationary and that the eddy is being convected past in the x-direction, then the 
signature as seen by the probe can be calculated by determining U along the lines of 
constant y in the (x, y)-plane. To avoid the complications involved with convection 
velocities, imagine that the vector field is temporarily ‘frozen ’, and the signatures 
will be Fourier decomposed in terms of the x-component wavenumber k .  

By applying the Biot-Savart law in conjunction with (2.4), it can be shown that 
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or, assuming solid-body rotation within the rod, 
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where K is the circulation of the vortex rod and ro in ( 7 . 2 )  is the rod radius. All other 
symbols are defined in figure 23. 

We will imagine that we are making a series of ‘ cuts ’ of uniform probability between 
0 and yl. The magnitude of the signatures reaches a maximum a t  yo( = yo), and for 
0 < y < yo it drops rapidly to zero for the U, component. The distance y1 represents 
the maximum distance from the rod we can go before experiencing the influence of 
the other leg or the legs of other vortices. The analysis is therefore using the signatures 
of one isolated rod. Of course, in future studies, the full A-vortex and arrays of such 
vortices should be used in a computer simulation. 

Equation ( 7 . 2 )  gives the following velocity signature for U,: 

Here Q = K A l R 2 / 2 n y ,  where A, ,  R and y are constants that depend on the direction 
cosines of the vector 3. This is expressed in its simplest form by an appropriate choice 
of the origin for x. Also X, = (x - a)/y, where a is the shift in the origin for x, and 
a l y  depends on the direction cosines. It can be shown that the amplitude of the 
signature N l l y .  The U, signature is an even ‘bell-shaped’ function, and the other 
components are a combination of an even and an odd function. 

The Fourier transform of the U, velocity signature defined by 

( 7 . 5 )  
Q 
ZR turns out to bet X,(kc,)  = ----e-kiv, 

where k, = kh; R is a constant of order unity and depends on direction cosines of the 
vector 3. It can be shown that the functional form given by (7.5) is applicable for all 
three components of velocity. 

Consider only the U, signature given by ( 7 . 5 ) .  This is the Fourier transform of a 
transient pulse. Imagine a train of such pulses arranged randomly in the x-direction 
with a mean spacing S and that the vorticity sign (or the effective sign of y) can be 
positive or negative with equal probability. It can be shown that the power-spectral 

( 7 . 6 )  
density is given by 

This equation will be true provided cross-products between neighbouring pulses 
make no contribution to the spacially averaged two-point correlation coefficient for 
points separated along the x-direction. An example where this is not true is for periodic 

t An interesting historical point can be found from Hinze (1959). In previous work, the auto- 
correlation functions were often assumed to be exponential, and these gave spectra having 
functional forms given by (7.3). We have reversed the usual assumptions. Here, signals and 
antocorrelations of U, are bell-shaped and the spectra cxponential. 

w,, Y) = 2nlX,(k,, Y)I2/X. 
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pulses. This would give a periodic correlation coefficient and a power-spectral density 
consisting of Dirac delta functions. The ‘smoothed ’ power-spect,ral density would 
then need to be used in the following discussions. It will be assumed that the contri- 
bution to the spectral energy by ‘ cuts ’ y < yo are negligible. 

Imagine that we have a collection of signature trains all a t  different y. Given that 
the probabilities of all ‘cuts’ in the interval 0 < y < y1 are equally likely, it can be 
shown that the ensemble-averaged or smoothed power-spectral density is then given by 

(7.7) 

Since all hierarchies are geometrically similar, all length scales will scale with yo, and 
Q will scale such that Q N U, yo, where U, is the characteristic velocity scale of all the 
hierarchies (and is also the friction velocity). 

Let (7.8) represent the smallest observed hierarcliy, which will be labelled n = 1. 
If the total number of observed hierarchies is No, the resulting power-spectral density 
Q, will be given by 

Here 0 is the energy per unit non-dimensional wavenumber k, yo. The scale yo for 
the nth hierarchy is yo Zn-l. 

From figure 14 it can be seen that as we go away from the wall the total number of 
observed hierarchies diminishes, i.e. No decreases. Also, yo is the smallest length scale 
of the smallest observed hierarchy and this will decrease as we approach the wall; 
the smallest value will then be proportional to the Kline scaling on a smooth surface. 
The ratio yl/yo will be universal and is associated with the geometry of the represen- 
tative eddy of a given hierarchy. A continuous distribution of scales would give much 
the same result but an exponential integral is involved. 

Figure 24 shows (7.9) for different hierarchies with yl/yo = 10, i.e. it is assumed 
that the ratio of rod diameter to leg spacing is of this order. It can be seen that as the 
wavenumber is decreased the spectrum goes from an exponential to a - 1 power law, 
with a short section that could be interpreted as a -$ law. However, we feel that this 
is not of significance, and that the law where the various hierarchies ‘peel off’ is the 
- 1 power law. The scale y1 of the largest hierarchy determines the low-wavenumber 
‘cut-off’ or ‘levelling out’ and the scale yo of the smallest hierarchy determines the 
high-wavenumber cut-off. The spectral results of Perry & Abell (1977) taken in the 
wall region of a pipe are shown in figure 2 5 .  The existence of a - 1 power law is obvious. 
This law was deduced by Perry & Abell using a ‘region of overlap’ argument based on 
dimensional analysis. The departure from the - 1 power law occurs a t  approximately 
k l z  = 1 in the experiments and a t  El yo 2: 10-1 according to (7.9). This implies that, at  
level z ,  the smallest ‘representative eddy’ of significance has y1 2: O ( z ) .  This is of the 
right order. 

It is very instructive to look a t  spectra far from the wall. Here the number No of 
observed hierarchies fall off considerably and the spectra should follow the pattern 
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FIGURE 24. Equation (7.9) for various numbers of observed hierarchies : 
log @(klyo) versus log lily,,; yl/yo = 10. 

given in figure 24. Figure 26 (a )  shows some results of Abell & Perry (1 974) for a smooth 
pipe. Again, the similarity with the computed results given in figure 24 is very en- 
couraging. As a matter of interest, figure 26 ( b )  shows some rough-walled-pipe results 
taken outside the wall similarity region. The results show a similar behaviour. We 
would expect the smallest hierarchy scale 8, a t  the wall to scale with 4, the roughness 
scale. Unfortunately, no measurements exist for the wall similarity region for this case. 

The model is of course simplified. Spectral information concerned with the vortex 
shape and the plane-strain processes is missing. However, the authors contend that 
the inclusion of this information will not alter the general behaviour, and will simply 
be hidden or ‘buried ’ in the - 1 power-law region, or else be removed by smoothing. 

The scaling of Perry & Abell results given in figure 25 suggest that for the wall 
region but beyond the buffer zone 

@ ( k , W Y  = f(k,x), (7.10) 

where @ is now the energy per unit non-dimensional wavenumber k, x ,  and this appears 
valid right up t o  high wavenumbers. This is reasonable, since at a given x the smallest 
eddy of significance observed will scale approximately with x since, if it  is smaller, it 
will not be seen and, if it is larger, it will not be the smallest eddy. 

In  the energy-containing region 

(7.11) 

where A is a universal constant. Figure 27 shows the spectra with appropriate ‘cut- 
offs’. B and & are. universal constants. The broad-band quantity $/U: is obtained 
approximately from the integral 
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which could be written in the form 

- U'4 - B,, - A,, In - z , 
u; - AE 

which is the Townsend result given earlier ((6.7)). 
The results of Abell & Perry (1974) and Perry & Abell (1975, 1977) were obtained 

by a stationary probe and frequencies had to be converted to wavenumbers k,  by 
the use of an assumed convection velocity. The small eddies a t  the wall will be con- 
vecting themselves ' back' relative to a field induced by the larger eddies. The largest 
eddies, on the other hand, will be convecting themselves back reIative to  the flee 
stream. Since the characteristic velocity of each hierarchy is the same, then, relative 
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FIGURE 27. Linear plot of spectrum. 

to a stationary observer, the largest eddies will have the highest convection velocity 
(and this will be in the direction of the free stream). Perry & Abell (1975, 1977) dis- 
cussed this spread in phase velocities and assumed that the highest w avenumbers would 
be convected approximately a t  the local mean velocity a t  a given level z. This is 
probably not correct, particularly for the lower wavenumbers at a fixed level z .  How- 
ever, the above authors found that an incorrectly inferred wavenumber in the - l 
region of the spectrum made no difference. It simply shifted the data points along the 
- 1 line. Thus the assumption that all wavenumbers are convected at the local mean 
velocity a t  a given level z will not alter the general features of the spectrum. This 
assumption was used in the spectral data presented. 

Although Perry & Abell(l977) also incorporated the - i power law in their scaling 
scheme by a further ‘region-of-overlap’ argument, it would appear that  this law is a 
‘red herring’, at least in wall turbulence. However, the existence of the law is very 
obvious in other types of turbulence. If we return to (7.6) and redistribute the energy 
among the hierarchies such that  

then one obtains a family of spectra for different No, as shown in figure 28. All low- 
wavenumber ‘peel-offs’ occur from a -$  line. Figure 29(a) shows a turbulent jet, 
The eddy structure in this jet is quite granular, with a characteristic direction, but the 
resulting spectra given in figure 29 ( b )  shows an extensive - $ law without any evidence 
of a - 1 law. Thus it would appear that there are different sorts of turbulence, and the 
- law results from a different distribution of energy from that found in wall turbu- 
lence. The physical reason for this is not yet understood, and this idea needs to be 
pursued. 

FIUURE 26. Measured spectrum function @ ( k , z ) / U :  in a pipe for regions beyond the wall 
- 

similarity zone. (a)  Smooth pipe. (6) Rough pipe. Here @ ( k , z ) d ( k , z )  = u;. 
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FIGURE 28. Equation (7.12) for different numbers of observed hierarchies.? 

8. Conclusions and discussions 
Turbulent boundary layers can be thought of as a forest of A-type vortices which 

originates from the wall. Computer calculations show that these vortices have the 
correct transport properties. Fluid is lifted from the wall and replaced by fluid from 
above. The hypothesis of vorticity cancellation enables one to regard the vortices as 
being surrounded by irrotational fluid. It is this vorticity cancellation that makes the 
problem tractable. In  the transport of heat there is no analogous thermal cancellation, 
and so the problem is intractable a t  this stage without numerical simulations. 

The A-shaped vortices commence their growth from the wall, and are initially at 
the Kline scaling. During their process of roll-up, viscous sublayer material is rolled 
up in a sheet, and this sheet rolls up to form rods. Once the roll-up process ceases, 
the circulation in the rod remains constant, and the A-vortex stretches under its own 
mutual induction with its image to give, in the large, plane strain, a t  least for the 
vortices assumed here. The rods appear locally to undergo axisymmetrical strain. All 
these motions have been observed in trip-wire vortices, and are predicted by the 
Biot-Savart law. The plane strain brings the legs of the vortex together, and vorticity 
cancellation takes place by viscous diffusion, leading to the death of the eddy. A 
hierarchy of scales of these eddies must exist to obtain a logarithmic mean-velocity 
profile with constant Reynolds shear stress for arbitrary large z+ for AE UT/v+ 00. 

These hierarchies must be geometrically similar and the circulation in the vortex rods 
must scale with the hierarchy scale 6. This geometrical similarity includes all length 
scales associated with the eddy, including its mean streamwise and spanwise spacing. 
Hence all hierarchies have the same characteristic velocity scale. Two possible models 
for the existence of the various scales of hierarchies are described. One is the vortex- 
pairing process, and this leads to  a discrete system of hierarchies where the scales go 
in a geometrical progression with a factor of 2 .  This model requires plane strain to 

t Equation (7.12) has recently been computed for 20 hierarchies and the results asymptote 
even closer to the -2 law. 
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FIGURE 29. Turbulent jet. (a)  Flow pattern. ( b )  Measured spectrum; ensemble 
average of 40 runs. Reynolds number based on tube outlet diameter = 3000.t 

explain the continuous distribution of the logarithmic profile. However, jitter would 
tend to smear out the scale distributions to give an inverse-power p.d.f. ; plane strain 
is then not necessary to explain the logarithmic distribution. 

If we have a continuous distribution of hierarchy scales, then it can be shown that 
any hierarchy function f(z, 8) will lead to a logarithmic profile, i.e. 

dz 
t By moving the probe further downstream in a jet we have recently found that the exLent 

of the -4  law increases. 
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FIGURE 30. Various eddy shapes and resulting distributions of c l q f d z  without plane strain or 
stretching. (a) True A-vortex; (6) parabolic ‘A’ vortex; (c) rectangular ‘A’ vortex. 

provided f(z ,  6) = ( U,/S)fl(z/S) and pH(6) = M / 6 .  clD1/dz = U , / a  will occur over 
some range for 6, < z < AE no matter what form f l  takes, provided it does not have 
a singularity a t  z / 6  3 0. Figure 30 shows various eddy shapes and the laws given 
without plane strain or stretching. The effect of stretching is simply to ‘smear’ out 
f , ( z / 6 )  and hence reduce the range of validity of the logarithmic profile. The laws given 
in table 1 for the velocity are simply not sufficient to  pin down precisely the eddy 
shape and its motion. If some further information could be obtained from the tem- 
perature distribution, this would help to narrow down the possibilities. The other 
alternative is to establish more laws based on higher moments of probability (see 
e.g. Frenkiel & Klebanoff 1973). 

So far we have dealt mainly with the wall region. There is no reason why our model 
should not be applicable with some detailed modifications to the outer flow. However, 
a t  the moment, the model predicts a deviation below the logarithmic law as z/AE -+ 1. 
This would give a negative Coles wake factor (see Coles 1956). A gradual departure 
from geometrical similarity as $/Ax -+ 1 and a modification of pH(&)  would probably 
cure this anomaly. 

For a long time, the concept of vortex pairing was resisted by the authors. The 
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idea of two A-vortices pairing to produce one A-vortex with its circulation doubled 
and to have an increase in scale so as to belong to a higher hierarchy appears to be 
inconsistent with the conservation of kinetic energy. However, this is true only if we 
are considering two isolated A-vortices producing one isolated A-vortex. In  reality, 
the A-vortices are not isolated but are arranged in an array. The contribution of kinetic 
energies from the A-vortices must be broken up into a mean-flow contribution and a 
fluctuating contribution. The pairing process may cause an increase in turbulent 
kinetic energy a t  the expense of the mean-flow kinetic energy. There is no simple way 
of deciding, on the basis of energy considerations, whether this pairing process is 
possible once interactions with neighbouring vortices and mean-flow fields are taken 
into account. Pairing has been observed in other flow situations, such as in free shear 
layers, jets and wakes both experimentally and computationally (see e.g. Winant & 
Browand 1974; Brown & Roshko 1974; Acton 1980). However, we have yet to observe 
this pairing in boundary layers. The more easily observed trip-wire vortices have been 
studied for some time, and we have so far failed to ‘coax’ them to pair. 

The continuously growing eddy model is an attractive possibility. Here the eddy 
continues to draw vorticity from the wall, and its circulation is assumed to increase 
in proportion with its scale 6, its shape being preserved during this process. Once the 
process is interrrupted, plane strain commences, leading to the ultimate death of the 
eddy. The likelihood of survival during the growth must diminish with scale 6, leading 
to the appropriate distribution of hierarchy scales. This model gives a genuinely 
continuous distribution of hierarchy scales. However, it should be pointed out that 
there is no obvious mechanism based on the Biot-Savart law for this continuous roll-up 
with a ‘ self-preserving-shape ’ eddy, nor has its existence been definitely established. 

Turbulence spectra that have all the correct properties can be derived by the use 
of eddy signatures derived from potential-flow vortices which have characteristic 
directions. The distribution of energy among the scales follows directly from the 
scaling laws needed to give the logarithmic profile and constant Reynolds shear stress. 
The use of local isotropy and energy cascades does not appear to be relevant. The use 
of the potential-flow A-vortex in obtaining a link between the mean flow, Reynolds 
shear stress, turbulence intensities and spectra in wall turbulence looks promising. 

The authors wish to acknowledge the financial Assistance of the Australian Research 
Grants Committee, The National Energy Research, Development and Demonstration 
Council and the Australian Institute of Nuclear Science and Engineering. 

Appendix A 
Equation (5.6) can be written as a particular case of 

with E = 8. Now (A 1) can be written as 

where 9 is the Dirac delta function. 
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FIGURE 31. Equation (A 1) : (a)  B finite; ( b )  B + 0. 

We would like to write 

dz = SB:Ff(z ,  8)pH(8) d8, 

where pH(&)  is a finite, smooth continuous function which possesses properties similar 
to our geometrical progression. With the discrete system 

m 

p H ( & )  = ~ ( 8 - ( l - ~ ) 4 n - 1 ) 8 ~ ) .  (A 4) 
n = - m  

Equation ( A 4 )  is shown plotted semilogarithmically in figure 31 (a ) .  To make pH(d) 
continuous, we need to take s+O and then 'smooth' the function. Firstly, taking 
e-+ 0 gives the diagram shown in figure 31 (b ) .  The spacing between the spikes is given 

by - ln( l -e)  - + + e + $ e 2 + 9 e 3 + . . .  

as B -+ 0,  and in the limit the spacing is B .  

Let p,,,,(S) be the smooth value of p13(8) defined as 

For A8 sufficiently small, and E even smaller pHs(8) = d N / d 8 ,  where dN is the number 
of unit-area spikes in the interval d6. But 

dN 1 dN d8 
dln6 B d6dln6 '  

- 

HencepH,(8) = 1 / d .  
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FIGURE 32. Comparison of function 9 weighted by a discrete and a distributed p.d.f. 

Unfortunately, as E -+ 0 this does not converge. A more appropriate function for 
pH(&)  is the smoothed value 

and is the p.d.f. of a logarithmic probability distribution. Thus we could say 

P H s ( S )  = M / S ,  (A 7) 

N 

n= 1 
c f (z,aI2n-1) * 

Consider the following example, which shows a comparison between the distributed 
and discrete system. Suppose we wished to sum together a series of functions f ( z ,  S), 
where S is going in geometrical progression with a factor of 2 to give a function $. 
Suppose 

In the discrete system, the resulting function $ would be given by 

f ( z , S )  = {1-H(z-S)} .  

N 

n = l  
$ = {I - H(z  - 6,2n-1)}, 
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and this is shown plotted semilogarithmicalIy in figure 32(a).  For a distributed 
system 

This is shown plotted semilogarithmically in figure 32 (b ) .  

Appendix B 
Consider the integral 

For z* small, let I13(z*) = Qz*, where Q is a universal constant. Let k be a universal 
value of z* such that it is the outer limit of Il ,(z*) = Qz*. 

We will now integrate in two regions: 

Now for 8, < z < A, % = Q M { k - ~ ) + / ~ I , , ( z * ) M - - .  dz* 
X *  

Note that, for z* > 0(1), I13-+I13(~)+0. Therefore 

where K ,  is a universal constant. Therefore, Ti&/ U: = KI3 ,  where K,, is a universal 
constant. Equations (6.7)-(6.9) are found by a similar technique, noting the various 
Townsend boundary conditions given by (6.4).  
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